Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate rather than precisely deduced from classical predicate logic. It can be thought of as the application side of fuzzy set theory dealing with well thought out real world expert values for a complex problem (Klir 1997).
Degrees of truth are often confused with probabilities. However, they are distinct conceptually; fuzzy truth represents membership in vaguely defined sets, not likelihood of some event or condition. For example, if a 100-ml glass contains 30 ml of water, then, for two fuzzy sets, Empty and Full, one might define the glass as being 0.7 empty and 0.3 full. Note that the concept of emptiness would be subjective and thus would depend on the observer or designer. Another designer might equally well design a set membership function where the glass would be considered full for all values down to 50 ml. A probabilistic setting would first define a scalar variable for the fullness of the glass, and second, conditional distributions describing the probability that someone would call the glass full given a specific fullness level. Note that the conditioning can be achieved by having a specific observer that randomly selects the label for the glass, a distribution over deterministic observers, or both. While fuzzy logic avoids talking about randomness in this context, this simplification at the same time obscures what is exactly meant by the statement the 'glass is 0.3 full'.
Fuzzy logic allows for set membership values to range (inclusively) between 0 and 1, and in its linguistic form, imprecise concepts like "slightly", "quite" and "very". Specifically, it allows partial membership in a set. It is related to fuzzy sets and possibility theory. It was introduced in 1965 by Lotfi Zadeh at the University of California, Berkeley.
Fuzzy logic is controversial in some circles and is rejected by some control engineers and by most statisticians who hold that probability is the only rigorous mathematical description of uncertainty.[verification needed] Critics also argue that it cannot be a superset of ordinary set theory since membership functions are defined in terms of conventional sets.
No comments:
Post a Comment